The Following Are Barriers To Electronic Health Record Except

The Following Are Barriers To Electronic Health Record Except

All articles published by are made immediately available worldwide under an open access license. No special permission is required to reuse all or part of the article published by , including figures and tables. For articles published under an open access Creative Common CC BY license, any part of the article may be reused without permission provided that the original article is clearly cited. For more information, please refer to https:///openaccess.

Feature papers represent the most advanced research with significant potential for high impact in the field. A Feature Paper should be a substantial original Article that involves several techniques or approaches, provides an outlook for future research directions and describes possible research applications.

Life

Editor’s Choice articles are based on recommendations by the scientific editors of journals from around the world. Editors select a small number of articles recently published in the journal that they believe will be particularly interesting to readers, or important in the respective research area. The aim is to provide a snapshot of some of the most exciting work published in the various research areas of the journal.

How To Successfully Select And Implement Electronic Health Records (ehr) In Small Ambulatory Practice Settings

By Chen Hsi Tsai 1 , Aboozar Eghdam 1 , Nadia Davoody 1 , Graham Wright 2 , Stephen Flowerday 2 and Sabine Koch 1, *

Despite the great advances in the field of electronic health records (EHRs) over the past 25 years, implementation and adoption challenges persist, and the benefits realized remain below expectations. This scoping review aimed to present current knowledge about the effects of EHR implementation and the barriers to EHR adoption and use. A literature search was conducted in PubMed, Web of Science, IEEE Xplore Digital Library and ACM Digital Library for studies published between January 2005 and May 2020. In total, 7641 studies were identified of which 142 met the criteria and attained the consensus of all researchers on inclusion. Most studies (n = 91) were published between 2017 and 2019 and 81 studies had the United States as the country of origin. Both positive and negative effects of EHR implementation were identified, relating to clinical work, data and information, patient care and economic impact. Resource constraints, poor/insufficient training and technical/educational support for users, as well as poor literacy and skills in technology were the identified barriers to adoption and use that occurred frequently. Although this review did not conduct a quality analysis of the included papers, the lack of uniformity in the use of EHR definitions and detailed contextual information concerning the study settings could be observed.

In the early 1990s, a trend in the shift from paper-based health records to electronic records started; this was in response to advances in technology as well as the advocacy of the Institute of Medicine in the United States [1, 2]. As a result of the inadequacies of paper-based health records gradually becoming evident to the healthcare industry [3], electronic records have continued to be developed and envisioned with many expected benefits over the past 25 years.

The Use Of Electronic Health Records To Support Population Health: A Systematic Review Of The Literature

Over those 25 years, the names and terms used to represent the concept of electronic records have changed frequently while the basic idea has remained the same [4]. Nowadays, the term “electronic health record” (EHR) is widely used for records adopted by clinicians [4]. This usage does not, however, comply with the way different types of electronic records have been defined by the International Organization for Standardization (ISO).

According to ISO/TR 14639-1:2012(en), an “electronic medical record” (EMR) is defined as an “electronic record of an individual in a physician’s office or clinic, which is typically in one setting and is provider-centric”, whereas an “electronic patient record” (EPR) is defined as an “electronic record of an individual in a hospital or health care facility, which is typically in one organization and is facility-centric” [5]. Given the previous two definitions, an electronic health record (EHR) is defined as follows: “Information relevant to the wellness, health and healthcare of an individual, in computer-processable form and represented according to a standardized information model, or the longitudinal electronic record of an individual that contains or virtually interlines to data in multiple EMRs and EPRs, which is to be shared and/or interoperable across healthcare settings and is patient-centric.”[5]

Most

Furthermore, a personal health record (PHR) is defined by ISO/TR 14292:2012(en) as “…a representation of information regarding, or relevant to, the health, including wellness, development and welfare of that individual, which may be stand-alone or may integrate health information from multiple sources, and for which the individual, or the representative to whom the individual delegated his or her rights, manages and controls the PHR content and grants permissions for access by, and/or sharing with, other parties.”[6]

Perceived Barriers And Risks Of Ehr Implementation By Ehr...

However, a continuum exists in many countries between the two strict views of the EHR and PHR on the one hand, regarding the entity that has control over the record and the content within it, and the tethered PHRs on the other. In the latter case, the patient is given access to the EHR by the care provider without the patient controlling it. This access function is often part of a patient portal.

Approximately 25 years after the emergence of EHRs, substantial progress has been made regarding EHR implementation, adoption and use [2]. Unfortunately, this has mostly been in an uncoordinated way rather than with a coordinated and logical approach. Many of the initial expectations regarding time efficiency, productivity, and increased quality of care have not been met or have only been partially realized, and “current EHRs still do not meet the needs of today’s rapidly changing healthcare environment” [2]. Data duplication is still a prevailing issue and solutions are still sought even though this was expected to be solved by the uptake of EHRs [7, 8, 9]. Only recently has there been any significant progress in the development of legal frameworks for patient privacy and confidentiality concerning EHR data [2, 10, 11]. Continuing progress on standards for EHR data has strengthened the capability of data exchange, the secondary use of data and decision support [2, 12].

PDF]

Despite the apparent progress in implementation methods and the use of EHRs, the realization of benefits still lags behind expectations. Great challenges for clinicians as end users of EHRs exist, which restricts their potential to facilitate both the work of clinicians and the improvement of patient care quality [13]. Whether the use of EHRs improves efficiency (i.e., “saves time”) for clinicians or not is still regarded as controversial [2]. While some believe that the adoption of EHRs has improved patient care, further work needs to be undertaken. In particular, identification of the complex mechanism behind the measurement of patient outcomes related to the implementation of EHRs is needed to reach a more concrete conclusion [14].

Pdf) Adoption Of Electronic Health Records And Barriers

The aim of the study is, therefore, to review the existing literature and elicit current knowledge on the effects of EHR implementation and the barriers to EHR adoption and use.

In line with Peters et al. [15], a scoping review of the literature without assessing the quality of the included studies was conducted.

What

Searches were conducted in PubMed, Web of Science, IEEE Xplore, and ACM Digital Library. A comprehensive search strategy was developed where search terms were combined and used in two different sets (set 1: electronic health record, EHR, personal health record, PHR, and patient record; and care pathways, workflow, work routines, workload, and work process; set 2: electronic health record, EHR, personal health record, PHR, and patient record; and efficiency, advantages, disadvantages, satisfaction, teamwork, collaboration, benefits, and challenges) when retrieving the studies. See Table 1 for electronic search strategy.

Doctors Find Barriers To Sharing Digital Medical Records

In total, 8114 studies were identified of which 473 were duplicates that were removed, resulting in 7641 unique and potentially relevant studies.

The titles and abstracts of the 7641 studies were manually screened against the inclusion and exclusion criteria. Inclusion criteria were review articles, conference papers and original articles published in English between January 2005 and May 2020, focusing on the barriers to and effects of implementing EHRs or tethered PHRs. Individual studies that were also included in a literature review were not removed. Studies reporting on the effects of implementing tethered PHRs were included as we considered them to be part of EHRs. Exclusion criteria included studies related to secondary use of EHRs, data mining of EHRs, methods for evaluating EHR implementation, and EHR-integrated applications/software/tools. Subsequently, 7403 studies were excluded based on these criteria. This left 238 articles, which were read in full by four researchers (A.E., C.H.T., G.W., and S.K.). Two additional researchers (S.F. and S.K.) were called in for a discussion on the disagreements when comparing the assessments of eligibility. Finally, consensus was reached among all researchers on the inclusion of 141 articles in the final analysis of this scoping review (Figure 1). Full-text articles were excluded with reasons, including meeting the exclusion criteria; investigating partial components of EHRs (e.g., e-prescription and decision support); focusing on system development models/methods, strategic/design recommendations, design prototypes, and usability principles; reporting speculations about success factors, prevalence of use, user group characteristics and differences, workflows, and processes of implementation.

Perceived

The full-text pdf files of the 141 studies were imported into NVivo 12. Using the

Achieving Clinician Use And Acceptance Of The Electronic Medical Record

LihatTutupKomentar